Homogenization of monotone systems of Hamilton-Jacobi equations

نویسندگان

  • FABIO CAMILLI
  • PAOLA LORETI
چکیده

In this paper we study homogenization for a class of monotone systems of first-order time-dependent periodic Hamilton-Jacobi equations. We characterize the Hamiltonians of the limit problem by appropriate cell problems. Hence we show the uniform convergence of the solution of the oscillating systems to the bounded uniformly continuous solution of the homogenized system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogenization of accelerated Frenkel-Kontorova models with n types of particles

We consider systems of ODEs that describe the dynamics of particles. Each particle satisfies a Newton law (including a damping term and an acceleration term) where the force is created by the interactions with other particles and with a periodic potential. The presence of a damping term allows the system to be monotone. Our study takes into account the fact that the particles can be different. ...

متن کامل

Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations

We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.

متن کامل

Error Bounds for Monotone Approximation Schemes for Hamilton-Jacobi-Bellman Equations

We obtain error bounds for monotone approximation schemes of Hamilton-Jacobi-Bellman equations. These bounds improve previous results of Krylov and the authors. The key step in the proof of these new estimates is the introduction of a switching system which allows the construction of approximate, (almost) smooth supersolutions for the Hamilton-Jacobi-Bellman equation.

متن کامل

Hamilton-jacobi Equations with Partial Gradient and Application to Homogenization

The paper proves a new uniqueness result for viscosity solutions of the Dirichlet problem for Hamilton-Jacobi equations of the form H(x; u; D x 0 u) = 0 in ; u = g on @; where is an open subset or R n and D x 0 u is the partial gradient of the scalar function u with respect to the rst n 0 variables (n 0 n). The main theorem states that there is a viscosity solution of the equation which is uniq...

متن کامل

Stochastic homogenization of viscous superquadratic Hamilton–Jacobi equations in dynamic random environment

We study the qualitative homogenization of second-order Hamilton–Jacobi equations in space-time stationary ergodic random environments. Assuming that the Hamiltonian is convex and superquadratic in the momentum variable (gradient), we establish a homogenization result and characterize the effective Hamiltonian for arbitrary (possibly degenerate) elliptic diffusion matrices. The result extends p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008